Gleitende Durchschnittsbeschränkungen
In der Praxis liefert der gleitende Durchschnitt eine gute Schätzung des Mittelwerts der Zeitreihe, wenn der Mittelwert konstant ist oder sich langsam ändert. Im Fall eines konstanten Mittelwertes wird der grßte Wert von m die besten Schätzungen des zugrunde liegenden Mittels liefern. Ein längerer Beobachtungszeitraum wird die Effekte der Variabilität ausmachen. Der Zweck der Bereitstellung eines kleineren m ist es, die Prognose auf eine Änderung in dem zugrunde liegenden Prozess zu ermöglichen. Um zu veranschaulichen, schlagen wir einen Datensatz vor, der Änderungen im zugrundeliegenden Mittel der Zeitreihen enthält. Die Abbildung zeigt die Zeitreihen für die Darstellung zusammen mit der mittleren Nachfrage, aus der die Serie erzeugt wurde. Der Mittelwert beginnt als eine Konstante bei 10. Ab dem Zeitpunkt 21 erhöht er sich um eine Einheit in jeder Periode, bis er zum Zeitpunkt 30 den Wert von 20 erreicht. Dann wird er wieder konstant. Die Daten werden simuliert, indem dem Mittelwert ein Zufallsrauschen aus einer Normalverteilung mit Nullmittelwert und Standardabweichung 3 zugeführt wird. Die Ergebnisse der Simulation werden auf die nächste Ganzzahl gerundet. Die Tabelle zeigt die simulierten Beobachtungen für das Beispiel. Wenn wir die Tabelle verwenden, müssen wir bedenken, dass zu einem gegebenen Zeitpunkt nur die letzten Daten bekannt sind. Die Schätzwerte des Modellparameters, für drei verschiedene Werte von m, werden zusammen mit dem Mittelwert der Zeitreihen in der folgenden Abbildung gezeigt. Die Abbildung zeigt die gleitende durchschnittliche Schätzung des Mittelwerts zu jedem Zeitpunkt und nicht die Prognose. Die Prognosen würden die gleitenden Durchschnittskurven nach Perioden nach rechts verschieben. Eine Schlussfolgerung ergibt sich unmittelbar aus der Figur. Für alle drei Schätzungen liegt der gleitende Durchschnitt hinter dem linearen Trend, wobei die Verzögerung mit m zunimmt. Die Verzögerung ist der Abstand zwischen dem Modell und der Schätzung in der Zeitdimension. Wegen der Verzögerung unterschätzt der gleitende Durchschnitt die Beobachtungen, während der Mittelwert zunimmt. Die Vorspannung des Schätzers ist die Differenz zu einer bestimmten Zeit im Mittelwert des Modells und dem Mittelwert, der durch den gleitenden Durchschnitt vorhergesagt wird. Die Vorspannung, wenn der Mittelwert zunimmt, ist negativ. Bei einem abnehmenden Mittelwert ist die Vorspannung positiv. Die Verzögerung in der Zeit und die Bias in der Schätzung eingeführt sind Funktionen von m. Je größer der Wert von m. Desto größer ist die Größe der Verzögerung und der Vorspannung. Für eine stetig wachsende Serie mit Trend a. Die Werte der Verzögerung und der Vorspannung des Schätzers des Mittelwerts sind in den folgenden Gleichungen gegeben. Die Beispielkurven stimmen nicht mit diesen Gleichungen überein, da das Beispielmodell nicht kontinuierlich zunimmt, sondern als Konstante beginnt, sich in einen Trend ändert und dann wieder konstant wird. Auch die Beispielkurven sind vom Rauschen betroffen. Die gleitende Durchschnittsprognose der Perioden in die Zukunft wird durch die Verschiebung der Kurven nach rechts dargestellt. Die Verzögerung und die Vorspannung nehmen proportional zu. Die nachstehenden Gleichungen zeigen die Verzögerung und die Vorspannung von Prognoseperioden in die Zukunft im Vergleich zu den Modellparametern. Diese Formeln sind wiederum für eine Zeitreihe mit einem konstanten linearen Trend. Wir sollten dieses Ergebnis nicht überraschen. Der gleitende Durchschnittsschätzer basiert auf der Annahme eines konstanten Mittelwerts, und das Beispiel hat einen linearen Trend im Mittel während eines Teils des Studienzeitraums. Da Realzeitreihen den Annahmen eines Modells nur selten gehorchen, sollten wir auf solche Ergebnisse vorbereitet sein. Wir können auch aus der Figur schließen, dass die Variabilität des Rauschens den größten Effekt für kleinere m hat. Die Schätzung ist viel volatiler für den gleitenden Durchschnitt von 5 als der gleitende Durchschnitt von 20. Wir haben die widerstrebenden Wünsche, m zu erhöhen, um den Effekt der Variabilität aufgrund des Rauschens zu verringern und um m zu verringern, um die Prognose besser auf Veränderungen anzupassen Im Mittel. Der Fehler ist die Differenz zwischen den tatsächlichen Daten und dem prognostizierten Wert. Wenn die Zeitreihe wirklich ein konstanter Wert ist, ist der erwartete Wert des Fehlers Null und die Varianz des Fehlers besteht aus einem Term, der eine Funktion von und ein zweiter Term ist, der die Varianz des Rauschens ist. Der erste Term ist die Varianz des Mittelwertes mit einer Stichprobe von m Beobachtungen, vorausgesetzt, die Daten stammen aus einer Population mit einem konstanten Mittelwert. Dieser Begriff wird minimiert, indem man m so groß wie möglich macht. Ein großes m macht die Prognose auf eine Änderung der zugrunde liegenden Zeitreihen unempfänglich. Um die Prognose auf Veränderungen anzupassen, wollen wir m so klein wie möglich (1), aber dies erhöht die Fehlerabweichung. Praktische Voraussage erfordert einen Zwischenwert. Prognose mit Excel Das Prognose-Add-In implementiert die gleitenden Durchschnittsformeln. Das folgende Beispiel zeigt die Analyse des Add-In für die Beispieldaten in Spalte B. Die ersten 10 Beobachtungen sind mit -9 bis 0 indexiert. Im Vergleich zur obigen Tabelle werden die Periodenindizes um -10 verschoben. Die ersten zehn Beobachtungen liefern die Startwerte für die Schätzung und werden verwendet, um den gleitenden Durchschnitt für die Periode 0 zu berechnen. Die Spalte MA (10) zeigt die berechneten Bewegungsdurchschnitte. Der gleitende Mittelwert m ist in Zelle C3. Die Fore (1) Spalte (D) zeigt eine Prognose für einen Zeitraum in die Zukunft. Das Prognoseintervall ist in Zelle D3. Wenn das Prognoseintervall auf eine größere Zahl geändert wird, werden die Zahlen in der Spalte Vorwärts verschoben. Die Err (1) - Spalte (E) zeigt die Differenz zwischen der Beobachtung und der Prognose. Zum Beispiel ist die Beobachtung zum Zeitpunkt 1 6. Der prognostizierte Wert, der aus dem gleitenden Durchschnitt zum Zeitpunkt 0 gemacht wird, beträgt 11,1. Der Fehler ist dann -5.1. Die Standardabweichung und mittlere mittlere Abweichung (MAD) werden in den Zellen E6 bzw. E7 berechnet. Die 7 Fallstricke der gleitenden Durchschnittswerte Ein gleitender Durchschnitt ist der Durchschnittspreis eines Wertpapiers über einen bestimmten Zeitraum. Analysten verwenden häufig gleitende Durchschnitte als analytisches Werkzeug, um es einfacher zu machen, Markttrends zu verfolgen, während sich die Wertpapiere auf - und abbewegen. Gleitende Mittelwerte können Trends festlegen und Impulse messen. Daher können sie verwendet werden, um anzugeben, wann ein Anleger ein bestimmtes Wertpapier kaufen oder verkaufen sollte. Investoren können auch gleitende Durchschnitte verwenden, um Unterstützungs - oder Widerstandspunkte zu identifizieren, um festzustellen, wann die Preise die Richtung ändern werden. Durch das Studium historischer Handelsbereiche werden Unterstützungs - und Widerstandspunkte etabliert, wo der Preis einer Sicherheit ihren Aufwärts - oder Abwärtstrend in der Vergangenheit umkehrte. Diese Punkte werden dann verwendet, um Entscheidungen zu treffen, zu kaufen oder zu verkaufen. Leider sind bewegte Durchschnitte nicht perfekte Werkzeuge für die Festlegung von Trends und sie präsentieren viele subtile, aber erhebliche Risiken für Investoren. Darüber hinaus gelten die gleitenden Durchschnitte nicht für alle Arten von Unternehmen und Branchen. Einige der wichtigsten Nachteile der gleitenden Mittelwerte sind: 1. Gleitende Mittelwerte ziehen Trends aus vergangenen Informationen. Sie berücksichtigen nicht die Änderungen, die eine zukünftige Performance der Sicherheit beeinflussen können, wie neue Wettbewerber, eine höhere oder niedrigere Nachfrage nach Produkten in der Branche und Veränderungen in der Managementstruktur des Unternehmens. 2. Im Idealfall wird ein gleitender Durchschnitt eine konsistente Änderung des Preises eines Wertpapiers im Laufe der Zeit zeigen. Leider bewegte Durchschnitte nicht für alle Firmen arbeiten, besonders für diejenigen in sehr volatilen Industrien oder diejenigen, die stark durch aktuelle Ereignisse beeinflusst werden. Dies gilt insbesondere für die Ölindustrie und die hochspekulativen Industrien im Allgemeinen. 3. Gleitende Mittelwerte können über einen Zeitraum verteilt werden. Dies kann jedoch problematisch sein, da sich der allgemeine Trend je nach eingestelltem Zeitraum erheblich ändern kann. Kürzere Zeitrahmen haben mehr Volatilität, während längere Zeitrahmen weniger Volatilität aufweisen, aber keine neuen Marktveränderungen berücksichtigen. Investoren müssen vorsichtig sein, welchen Zeitrahmen sie wählen, um sicherzustellen, dass der Trend klar und relevant ist. 4. Eine laufende Debatte ist, ob in den letzten Tagen des Berichtszeitraums mehr Wert gelegt werden sollte oder nicht. Viele glauben, dass die jüngsten Daten besser die Richtung widerspiegeln, in der sich die Sicherheit bewegt, während andere das Gefühl haben, dass einige Tage mehr Gewicht als andere, den Trend falsch verzerrt. Anleger, die unterschiedliche Methoden zur Berechnung der Durchschnittswerte verwenden, können ganz andere Trends ziehen. (Erfahren Sie mehr in Simple vs Exponential Moving Averages.) 5. Viele Investoren argumentieren, dass die technische Analyse eine sinnlose Art ist, das Marktverhalten vorherzusagen. Sie sagen, der Markt habe kein Gedächtnis und die Vergangenheit ist kein Indikator für die Zukunft. Darüber hinaus gibt es erhebliche Forschung, um dies zu unterstützen. Zum Beispiel führte Roy Nersesian eine Studie mit fünf verschiedenen Strategien mit gleitenden Durchschnitten. Die Erfolgsquote der einzelnen Strategien variierte zwischen 37 und 66. Diese Forschung deutet darauf hin, dass bewegte Durchschnitte nur Ergebnisse Ergebnisse über die Hälfte der Zeit, die mit ihnen einen riskanten Vorschlag für eine wirksame Timing der Börse könnte. 6. Wertpapiere weisen häufig ein zyklisches Verhaltensmuster auf. Dies gilt auch für Versorgungsunternehmen, die im laufenden Jahr eine stabile Nachfrage nach ihrem Produkt aufweisen, aber starke saisonale Veränderungen erfahren. Obwohl gleitende Durchschnitte können dazu beitragen, glätten diese Trends, können sie auch die Tatsache, dass die Sicherheit tendiert in einem oszillierenden Muster zu verbergen. (Weitere Informationen finden Sie unter Halten Sie ein Auge auf Momentum.) 7. Der Zweck jeder Tendenz ist vorherzusagen, wo der Preis eines Wertpapiers in der Zukunft sein wird. Wenn eine Sicherheit ist nicht in beide Richtungen Trend, es bietet keine Möglichkeit, von entweder Kauf oder Leerverkäufe profitieren. Der einzige Weg, einen Investor in der Lage zu profitieren wäre, um eine anspruchsvolle, Optionen-basierte Strategie, die auf den Preis verbleibenden stetig zu implementieren. Die untere Linie Die gleitenden Durchschnitte wurden von vielen als ein wertvolles analytisches Werkzeug angesehen, aber für jedes Werkzeug, das wirksam ist, müssen Sie zuerst seine Funktion verstehen, wann man es benutzt und wann es nicht benutzt wird. Die hier angesprochenen Risiken deuten darauf hin, dass es sich bei den gleitenden Durchschnittswerten nicht um ein wirksames Instrument wie etwa bei der Verwendung mit volatilen Wertpapieren handelte und dass sie bestimmte wichtige statistische Informationen wie zyklische Muster übersehen können. Es ist auch fraglich, wie effektive gleitende Durchschnitte für eine genaue Angabe der Preisentwicklung sind. Angesichts der Nachteile, gleitende Mittelwerte kann ein Werkzeug am besten in Verbindung mit anderen verwendet werden. Am Ende wird die persönliche Erfahrung der ultimative Indikator dafür, wie effektiv sie wirklich für Ihr Portfolio sind. (Für weitere, siehe Do Adaptive Moving Averages Lead zu besseren Ergebnissen) Rechnungslegung Methoden, die auf Steuern zu konzentrieren, anstatt das Auftreten von öffentlichen Finanzen. Steuerberatung wird geregelt. Der Boomer-Effekt bezieht sich auf den Einfluss, den der zwischen 1946 und 1964 geborene Generationscluster auf den meisten Märkten hat. Ein Anstieg der Preise für Aktien, die oft in der Woche zwischen Weihnachten und Neujahr039s Day auftritt. Es gibt zahlreiche Erklärungen. Ein Begriff verwendet von John Maynard Keynes verwendet in einem seiner Wirtschaftsbücher. In seiner 1936 Veröffentlichung, quotThe Allgemeine Theorie der Beschäftigung. Ein Gesetz der Gesetzgebung, die eine große Anzahl von Reformen in U. S. Pensionspläne Gesetze und Verordnungen. Dieses Gesetz machte mehrere. Ein Maß für den aktiven Teil eines economy039s Arbeitskräfte. Die Erwerbsquote bezieht sich auf die Anzahl der Personen, die sind.
Comments
Post a Comment